Tutorials and Guides: A curated list

This post is a curated list of my favourite tutorials and guides because “that one where Hadley Wickham was talking about cupcakes” isn’t the most effective search term. You can find my list of cheat sheets here. There are a lot of great resources on data science (I’ve included my top picks), so I don’t intend to reinvent the wheel here. This is just a list of my favourites all laid out so I can find them again or point other people in their direction when it comes up in conversation. I’ve also added a number of the “how to” type posts I’ve written on this blog as I often answer an enquiry in that format.

Data Science

Tutorials and videos: General

Puppets teach data science too

  • Render a 3D object in R. I have no idea where I would ever use this information in my practice, but it’s presented BY A PUPPET. Great fun.
  • DIY your data science. Another offering from the puppet circle on the data science venn diagram.



Work Flow

  • Guide to modern statistical workflow. Really great organisation of background material.
  • Tidy data, tidy models. Honestly, if there was one thing that had been around 10 years ago, I wish this was it. The amount of time and accuracy to be saved using this method is phenomenal.
  • Extracting data from the web. You found the data, now what to do? Look here.

Linear Algebra



Machine learning

Data visualisation

Natural Language Processing

I’ll continue to update this list as I find things I think are useful or interesting.

Edit: actually, “that one where Hadley Wickham was talking about cupcakes” is surprisingly accurate as a search term.

Screen Shot 2016-06-23 at 9.05.37 PM

Continuous, Censored and Truncated Data: what are the differences and do you need to care?

Whenever I work with someone whose statistical or econometric experience has been more practical than theoretical, two things happen. The first is that the poor person inexplicably develops a twitch whenever I launch into an enthusiastic tangent that requires a sheet of graph paper and extensive hand waving.

The other thing that inevitably happens is that the digression comes to an end and the question is asked “but does that matter in practice?”

When it comes to model section, the difference between data types really does matter. You may make choices one way or another, but understanding the differences (both obvious and subtle) lets you make those choices understanding that you do have them.

This post is a cliff-notes version of the issue. Maybe you’ve heard of these differences in data types and just need a memory jog. Maybe you’ve not heard of them at all and want somewhere simple to start.

Continuous data is pretty simple: it’s data that can lie anywhere on the real line with a positive probability. That is, it can be anywhere from very large negative numbers to very large positive numbers. The normal distribution is an example of continuous data.

Truncated data, on the other hand, is data which is continuous but has the added complication of only being observed above or below a certain point. The classic example suggested by Greene is income [1]. One example would be if we only surveyed the income of those earning above the tax-free threshold: then we would have truncated data.

Censored data is similar. It’s an issue not of observation but in the way the data is sampled. Some parts of the distribution are obscured, but not ignored. The survey may, for example, interview all income levels, but only record those above the tax free threshold and describe the rest as “under the tax threshold” rather than giving the income in dollar terms. In this case all parts of the distribution are reported on, but the level of information differs above or below a threshold.

Most people are aware of issues modelling categorical data using techniques designed for continuous data. However, censored and truncated data also need special treatment. A lot of the data we deal with has a natural truncation point: distance isn’t negative, prices are not (well, hardly ever) negative. Recognising that you may be dealing with truncated or censored data is an important part of initial data analysis. For a thorough discussion, see W.H. Green’s chapter on the subject here.

In practice, continuous data methodologies may work quite well for these types of data as long as there isn’t a large amount of data sitting at or near the truncation or censoring point (which is often zero).

Test scores are something I’ve worked a lot with. In my experience, once the proportion of test scores began to approach around 20% zeros, I needed to switch over to models designed for the issue. In the 10%-20% range I will often try a few of different models to see which is most appropriate. That’s just a general rule of thumb- your mileage may vary.

Hand waving and furious graph-paper drawing aside: yes in this case knowing the differences does matter in practice.


[1] W. H. Green, Econometric Analysis, is a classic text and here I’m looking at p. 756 in the fifth edition. There are three copies of this book living in my house. Definitely worth the investment if you are looking for either a classic text covering everything econometrics or a useful TV stand. What can I say? We were young and poor and a matched set of texts made up for deficits in our furniture budget. I’ve owned this book for nearly twenty years and I still use it- even long after we can afford furniture.

Modelling Early Grade Education in Papua New Guinea

For several years, I worked for the World Bank analysing the early grade education outcomes in a number of different Pacific countries including Laos, Tonga and Papua New Guinea, amongst others. Recently, our earlier work in Papua New Guinea was published for the first time.

One of the more challenging things I did was model a difficult set of survey outcomes: reading amongst young children. You can see the reports here. Two of the most interesting relationships we observed were the importance of language for young children learning to read (Papua New Guinea has over 850 of them so this matters) and the role that both household and school environments play in literacy development.

At some point I will write a post about the choice between standard ordinary least squares regressions used in the field and the tobit models I (generally) prefer for this data. Understanding the theoretical difference between censored, truncated and continuous data isn’t the most difficult thing in the world, but understanding the practical difference between them can have a big impact on modelling outcomes.