Using Natural Language Processing for Survey Analysis

Surveys have a specific set of analysis tools that are used for analysing the quantitative part of the data you collect (stata is my particular poison of choice in this context). However, often the interesting parts of the survey are the unscripted, “tell us what you really think” comments.

Certainly this has been true in my own experience. I once worked on a survey deployed to teachers in Laos regarding resources for schools and teachers. All our quantitative information came back and was analysed, but one comment (translated for me into English by a brilliant colleague) stood out. It read something to the effect of “this is very nice, but the hole in the floor of the second story is my biggest concern as a teacher”. It’s not something that would ever have been included outright in the survey, but a simple sentence told us a lot about the resources this school had access to.

Careful attention to detailed comments in small surveys is possible. But if you have thousands upon thousands of responses, this is far more difficult. Enter natural language processing.

There are a number of tools which can be useful in this context. This is a short overview of some that I think are particularly useful.

  • Word Clouds. These are easy to prepare and very simple, but can be a powerful way to communicate information. Like all data visualisation, there are the good and the bad. This is an example of a very simple word cloud, while this post by Fells Stats illustrates some more sophisticated methods of using the tool.

One possibility to extend on the simple “bag of words” concept is to divide your sample by groups and compare clouds. Or create your own specific dictionary of words and concepts you’re interested in and only cloud those.

Remember that stemming the corpus is critical. For example, “work”, “worked”, “working”, “works” all belong to the same stem. They should be treated as one or else they are likely to swamp other themes if they are particularly common.

Note that no word cloud should be constructed without removing “stop words” like the, and, a, I etc. Dictionaries vary- they can (and should) be tailored to the problem at hand.

  • Network Analysis. If you have a series of topics you want to visualise relationships for, you could try a network-type analysis similar to this. The concept may be particularly useful if you manually decide topics of interest and then examine relationships between them. In this case, the outcome is very much user-dependent/chosen, but may be useful as a visualisation.
  • Word Frequencies. Alone, simple tables of word frequencies are not always particularly useful. In a corpus of documents pertaining to education, noting that “learning” is a common term isn’t something of particular note. However, how do these frequencies change by group? Do teachers speak more about “reading” than principals? Do people in one geographical area or salary bracket have a particular set of high frequency words compared to another? This is a basic exercise in feature/variable engineering. In this case, the usual data analysis tool kit applies (see here, here and here). Remember you don’t need to stop at high frequency words: what about high frequency phrases?
  •  TF-IDF (term frequency-inverse document frequency) matrix. This may provide useful information and is a basis of many more complex analyses. The TF-IDF downweights terms appearing in all documents/comments (“the”, “i”, “and” etc.) while upweighting rare words that may be of interest. See here for an introduction.
  • Are the comments clustered across some lower dimensional space? K-means algorithm may provide some data-driven guidance there. This would be an example of “unsupervised machine learning” vis a vis “this is an alogrithm everyone has been using for 25 years but we need to call it something cool”. This may not generate anything obvious at first- but who is in those clusters and why are they there?
  • Sentiment analysis will be useful, possibly both applied to the entire corpus and to subsets. For example, among those who discussed “work life balance” (and derivative terms) is the sentiment positive or negative? Is this consistent across all work/salary brackets? Are truck drivers more upbeat than bus drivers? Again, basic feature/variable engineering applies here. If you’re interested in this area, you could do a lot worse than learning from Julia Silge who writes interesting and informative tutorials in R on the subject.
  • Latent Dirichlet Algorithm (LDA) and more complex topic analyses. Finally, latent dirichlet algorithm or other more complex topic analyses may be able to directly generate topics directly from the corpus: I think this would take a great deal of time for a new user and may have limited outcomes, particularly if an early analysis would suggest you have a clear idea of which topics are worth investigating already. It is however particularly useful when dealing with enormous corpi. This is a really basic rundown of the concept. This is a little more complex, but has useful information.

So that’s a brief run down of some basic techniques you could try: there are plenty more out there- this is just the start. Enjoy!

Late Night Democracy Sausage Surge

It’s hard-hitting electoral coverage over here at Rex. Democracy sausage is apparently more of  a late night event leading up to the election. Late night tweeting was driving the hashtag up until the close of 1 July. By the end of the day twitter had changed the #ausvotes emoji to a sausage sandwich. My personal prediction is another overnight lull and then a daytime surge on 02/07 petering off by 4pm on the day.

Time series graph of #democracysausage

 

And just for fun, who was the top Twitter advocate for the hashtag over the last three days? A user (bot?) called SausageSizzles. Some serious tweeting going on there. A steady focus on message and brand.

Bart chart

Meanwhile, as I write Antony Green on the ABC is teaching the country about sample size and variance of estimators at the early stage of counting.

The same as yesterday, check out this discussion on R Bloggers which provides a good amount of the code for doing this analysis.

Tracking Democracy Sausage

It’s a fine tradition here in Australia where every few years communities manfully attempt to make up funding gaps in the selling and eating of #democracysausage to the captured audience of compulsory voters.

For fun, I decided to see if we could track the interest in the hashtag on twitter over time. I’ve exported the frequencies out to excel for this graph making exercise, because I’ll be teaching a class on stats entirely in excel in a few weeks and this will make for some fun discussion.

Democracy sausage line graph

As we can see, as of last night (2 more sleeps until #democracysausage day), interest on twitter was increasing. I’ll bring you a democracy sausage update tomorrow.

Technical notes: the API I’m using would only pull a maximum of 350 tweets featuring the hashtag on any given day: I suspect we may be missing some interest in sausages. I’ll look into other ways of doing this.

One very useful resource formed the bulk of the programming required: this blog post on R bloggers takes you through the basics required to do the same to any hashtag you may be interested in exploring.

Happy democracy sausage day!